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Multiscale dynamics and robust critical scaling in a continuum current sheet model
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We analyze the self-organized critical behavior of a continuum running avalanche model. We demonstrate
that over local interaction scales, the model behavior is affected by low-dimensional chaotic dynamics that
plays the role of the primary noise source. With the help of scale-free avalanches, the uncertainty associated
with chaos is distributed over a variety of intermediate scales and thus gives rise to spatiotemporal fluctuations
that are characterized by power-law distribution functions. We show that globally, the continuum model
displays structurally stable critical scaling that can be observed in a finite region in the control parameter space.
In this region, the system exhibits a power-law critical divergence of the integrated response function over a
broad range of dissipation rates. The observed behavior involves a remarkably stable spatial configuration. We
explain the robust features of the model by the adjustable dynamics of its global loading-unloading cycle,
which allows maintaining the long-term stationary state without affecting the intrinsic avalanche dynamics.
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[. INTRODUCTION gous parametric dependencies underlie the critical behavior
of any SOC models with multiple absorbing staf8s
The phenomenon of self-organized criticali§O0 asso- A possible compromise between these two points of view

ciated with the formation of a stable critical point in open on the essence of the SOC state has been discussed recently
systems with many degrees of freedpt] has drawn con- by Kinouchi and Pradg7]. They have proposed that in some
siderable attention within the last decade. Nevertheless, itSOC systems, the critical dynamics can involve only weak
explanation and primary mechanism remain controversial. dependence on variations of the control parameters around
The original interpretation of the manner in which a sys-the SOC point. Such a weak dependence may provide a
tem arrives in the SOC state implies that this process doeghance to observe signatures of a near-critical behavior that
not require tuning of any external parameti#} This point  in practice is undistinguishable from “pure” criticality in a
of view is in agreement with early studies that were focused/@st range in the parameter space.

on the critical behavior of internal relaxation evertva- In this paper, we demonstrate that the robust scaling be-
lanches that were considered instantaneous with respect thavior similar to that described in Reff7] can arise in a
the driving time scalg¢3-5). continuum avalanche system. The model was proposed by

A second, more recent interpretation is that the SOC statku [9] and later modified by Klimagt al. [10] to studying
has some hidden control parameters that must be carefulfjpultiscale turbulence in the current sheet of Earth’s mag-
tuned before the system can reach the critical state. Thigetospheric tail. The dynamics of the model includes a hier-
approach emphasizes the fact that the infinite time separatigdchy of turbulent effects ranging from low-dimensional
between the external driving force and the internal dynamic§haos on the level of localized instabilities to multiscale ava-
requires tuning the driving rate to zero. The dissipation ratdanche dynamics obeying scale-free probability distributions
also must be tuned to zero since many of the SOC model§haracteristic of the SOC state. We show both analytically
including the prototypical sandpile model, lose the SOC stat@nd numerically that although complete criticality in this sys-
when some amount of the transported dynamical variable i{em exists only at a single point wheneande are tuned to
annihilated[6,7]. Using a mean-field approach, it has beenzero in accordance with theoretical results of R8f, there
shown analyticallyf8] that in sandpile and forest-fire models IS & wide range of the control parameters providing clear
of SOC, the driving ratér and the dissipation rate are in  Power-law divergence of the integrated response function
indeed relevant control parameters. Criticality is only ob-and, therefore, satisfying the conditions of structurally stable
tained in the limit of vanishindy and e, provided the ratio hear-critical dynamics.

h/e is infinitesimally small. It has been suggested that analo-

Il. THE CURRENT SHEET MODEL

*Present address: Institute of Physics, St. Petersburg State Univer- The first equation of the current sheet model developed by
sity, St. Petersburg, Russia; Klimas et al. [10] is obtained through a reduction of the re-
Electronic address: uritsky@geo.phys.spbu.ru sistive magnetohydrodynami¢MHD) system to a one-
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dimensional limit in which the magnetic field has onlyan a)
component and all quantities vary in the orthogandirec- 20
tion only. In this limit
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in which the dimensionless diffusion coefficient is given in o time 10
terms of the resistivityy(z,t) by D(z,t)=c?n(z,t)LV /4,
whereV, is a measure of the Alfven velocity in the plasma b) ©
andL is half of the system lengttsee below. Equation(1) 1600 _ 10000
is decoupled from the rest of the MHD system through the .
assumption ofS(z,t) as a given constant sourc&(z) ""'.‘_'14310.07 M 1550 0.08

=Spsin(mz/2L). The second model equation was adopted 4
from Lu [9]. In Ref.[10], this equation describes the time =
evolution of the diffusion coefficient due to the formation of
anomalous resistivity:
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dD/at=(Q(z,t)—D)/ 7,

Diax  |9By/dz|>k,

Qzy= Duin |9B /2| < Bk,

(2 FIG. 1. (a) Example of spatiotemporal dynamics of the diffusive
flux during an unloading intervalkE0.002,D ,.=5). Black areas
satisfy the conditiodD (9B, /dz)|>f and are treated as avalanches.
(b),(c) Distributions over the lifetime and transported flux of the
avalanches based on the analysis of three global unloading events
with the same parameters as in the top plate. Slope values are

shown with standard errors.

where D ,,,2Dmin- Here, the paramete®(z,t) introduces
the effects of a current driven instability into the model; it is
either in the excited stateQ=D 5 Or the quenched state
(Q=Dp,n)- According to Eq.(2), the transition from the
quenched to the excited state takes place when and Wherevgr s ANCHE DYNAMICS AND DETERMINISTIC

the field gradient exceeds a critical vakjevhereas the tran- CHAOS

sition back to the quiet state occurs if the gradient becomes

lower than Bk, where 8<1. The diffusion coefficient fol- To quantify the statistics of current sheet instabilities dur-
lows Q with the delay timer. ing the unloading events, we have analyzed the model dy-

The above equations were integrated numerically using aamics on spatiotemporal plots of the diffusive flux
leapfrog integration scheme on a discrete grid in the spatiat D(dB,/dz). Since the duration of localized excitations
interval —L=<z=<L, subject to boundary conditiont8,/9z  (Q=D 4y is typically much shorter than the relaxation time
=0 atz==*L. The boundary conditions prevent flux from  of the diffusion coefficient, the spatiotemporal analysis al-
escaping the region through the boundaries and the sourdews the recognition of instabilities developing concurrently
function has the effect of steadily introducing opposing mag-but independently in different regions of the current sheet. To
netic flux into the current sheet. In our calculations, we usedocate the instabilities, we applied a constant thresholthe
the following set of the model parameteis;,,=0; D.x  current sheet elements with absolute value of the diffusive
=5; L=20; 7=1; $=0.9. The remaining two parameters, flux greater thari and making up a contiguous pattern on the
Sy andk, were varied as specified below. z—t plane were considered to be parts of the same relaxation

The system(1), (2) can be considered an idealized one-process(avalanchg As an example, Fig. 1 shows the spa-
dimensional model of a magnetic field reversal in which thetiotemporal dynamics and probability distributions over life-
dynamics of the system are due to spatiotemporal magnetibme and total transported flux of the avalanches obtained
field annihilation. Besides the specific field geometry, an imwith f=2.5x10 2k D,.. It can be seen that the distribu-
portant feature of this model is the absence of external noisd¢ions have a clear power-law form characteristic of systems
The system displays two levels of activity. On a long timeat or near the SOC state. The power-law exponents obtained
scale, the dynamics consists of system-wide unloatfiet  for lifetime and flux distributions are, respectively, 1.13
annihilation events separated by quiet loading periods. Dur-+0.07 and 1.5% 0.08. A similar behavior has been observed
ing the unloading intervals, the system exhibits spatiotempofor the perturbation length distribution, with the power expo-
ral turbulence characterized byfdlike power spectral den- nent 1.04-0.10.
sity and power-law distribution functions of individual The primary mechanism of the stochastic model behavior
localized instabilities analogous to avalanches in sandpileluring the unloading intervals calls for special investigation.
models of SOJ10,11]. Indeed, although the model equations do not include any
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10 g riodic due to the finite number of possible stai@$ The
: period of this dynamics strongly increases with the number
of elements, and for large values mthe resulting behavior
becomes unpredictable. In contrast, the complexity in the
current sheet model has a low-dimensional origin and can
arise at any grid site surrounded by a pair of neighbors and
------ subjected to a flux inflow.

Iy

A
[a%-" d=1.5 IV. INTEGRATED RESPONSE FUNCTION

0.01 E PR Structurally stable critical scaling requires that the model
; dynamics remains near the SOC state for a finite range of the
effective control parameters represented fbyand ¢. To
check the possibility of such an effect in the current sheet
1 10 100 model, we studied scaling features of the total susceptibility

r x defined as a space and time integral of the impulse re-
sponse function describing the reaction of the system to a
small perturbatio8]. For a stationary perturbation, the total
susceptibility can be determined as

0.001

FIG. 2. The correlation integral statistiGsumberC of pairs of
phase points separated by the distance lessrihé&or the Poincare
cross section in the coordinatéB,(z,t)/9z,dB,(z,t—T)/dz repre-
senting the local grid site coupling dynamicdD£0.16,T
=0.05,n=3, f;,,=0.005). The inset: a view of a phase portrait at
the same parameter values.

x=dpa(h,e)/dh, ()

where p, is the density of active grid sites averaged over
explicit sources of noise, its dynamics exhibits an apparengPace and time. As the system approaches the SOC state, the
stochastic component. We have found that, in the absence 8fisceptibility scales with the dissipation rateas y~&~ 7,

a noise source, this randomness is produced by a determif:= 1 [8]. We consider this scaling law as the criterion for the
istic chaos due to local nonlinear interactions between thédentification of the critical region of the model. In order to
current sheet elements. In order to test this effect, we hav@btain the expression foy in the current sheet model, its
studied the dynamics of a small numherf neighboring ~dynamics should be analyzed in the long-term steady state.
grid sites obeying Eq€1), (2). The grid sites were subjected Averaging Eq(1) over time and integrating over position for
to a constant input flux;,, through one of the boundaries either negative or positive values pive find that

and an open boundary condition at the opposite boundary.

Such a subsystem mimics the propagation of the avalanches So2L/m=([D(Bx/9Z)],=0): - (4

through a small region of the current sheet. _ )

n=2 the dynamics of the grid sites, as represented by thfux whereas the right-hand side describes the dissipation
time evolution ofB,(t) andD(t), is completely determinis- that takes place at the central point where the opposing fields
tic and periodic. However, starting from=3, the evolution ~ Meet and annihilate. With the chosen value of the hysteresis

becomes rather complex. The dependence of its phase-spdd@ameters, the field gradient at this point always remains
structure on the model parameters is nonmonotonic and coff? the neighborhood of the critical valueand so the fluc-
sists of wide domains of chaotic oscillations separated byuations of the output flux are mainly contributed by the
narrow windows of regular dynamics. To obtain the correla-dynamics of the diffusion coefficient. It is easy to show that
tion dimensiond characterizing the chaotic regime, we used@t any spatial position, and in particular zt 0, the time
the well-known Grassberger-Procaccia formU[d.2]) average of the formal initial-value solution to E@),

2N, <r _ —tir 1Jt —(t-9)/r
=__ =" D(zt)=D(z,00e "'+ —| Q(z,5)e ds,
C(r) N(N—l)’ TJo

where N, _g is the number of points on the Poincasmss is given by(D),=(Q);. We assume that the time average of
section separated by a distamdess tharRandN is the total Q atz=0 can be expressed in terms of tlagal spatiotem-
number of points. The results of this analysis show that theporal average of this parameter as

phase space of the studied subsystem has distinct fractal ge-

ometry(Fig. 2), and the current sheet model does generate a (Q(z=0))=&Q) 1, 5)
deterministic chaos on the level of local interactions.

It should be emphasized that the chaotic dynamics in tha&vhere¢ is a numerical factor depending on the shape of the
interactions of the elements of the current sheet model differsiean spatial profile 0. The value ofQ), ., in its turn, is
from complex behavior in a deterministic version of sandpilea function of the density, of active sites that are naturally
cellular automata. In the cellular automata driven by steadylefined by the conditiol®=D,,,. Sincep, estimates the
input, the dynamics can be complicated but in fact it is peprobability of finding a site in the active state witQ
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FIG. 3. Dependence of the paramefezntering the steady-state . . . S
solution to the systerfl),(2) on the reduced control parametek. Th FIG. 4. IScaI]:.r:g of_the ts)ust;eptlbll_lgyl_ with the dissipation rate.
Capital letters mark three main regions of system’s behavior dis- € power-law fit IS given by the Solid fine.

cussed in the text. .
controls the state of the system. Any pairstoéind ¢ that

have the same ratio lead to the safn&o, in order to find a
dynamical regime characterized by constgnt was enough
to study this parameter as a functionhok.

pa= (2/m)So _ (6) We have found that the dependengfh/e) consists of

& EkDpaxlL three distinct regionéFig. 3). Forh/e<2x10 2 (region A),

The numerator in this relation represents the average rate gtas a function of the reduced control parameter is practically
which the sourceS(z)=Sysin(mz/2L) adds the magnetic constant, and so we expect thag/oh=9&/9e=0 and y
field to the current sheet elements and so correspontis to ~1/e in accordance with Eq8). Based on the finite range
The combinatiork D, /L in the denominator describes the of the driving and dissipation rates that produces power-law
average rate of annihilated flux per unit volume and is adivergence of the integrated response function, we identify
reasonable analog for the dissipation rateHence, Eq(6) this regime as structurally stable critical scaling. To confirm

=Dpax, and sinceD ,;,=0, we expect tha{Q), ;= paD max-
Combining the above results, we obtain

can be rewritten in the form the critical behavior ofy in the region A of Fig. 3, we con-
structed a series of plots showing active site density versus
pa=hl/(&e), driving rate for different dissipation rates. In each plot we

selected a linear segment correspondinghte<2x 10 2
and found its slope to estimateat the present. The results
Ishow that in this region, the total susceptibility obeys a
power-law relation8) over at least three decades of the dis-
sipation rate with a remarkably high accura&yg. 4).

h=(2/m)Sy, &=KDmaL. 7)

It is worth noting that this steady-state solution does no
imply any constraints o and e such as are typical for
cellular automata at SOC in which the output flux is usually

. _2 . . .
limited by the fixed rate at which the conserved quantity can For h/e values higher than 2.10 (region B in Fig. 3,
be transported. Another important feature of EZ).is that, ¢ starts to respond to changes in the reduced control param-

in general ¢ is a function of both control parameters. How- eter; however, since the response is still very weak, this be-

ever, if for a certain region in the control parameter spacd'@vior can be considered almost critical. Starting frofa

&+ &(h,e), Eq. (7) allows us to calculate the total suscepti- ~1 (regio_n 0. to retain the stationary flux balance_ the pa-
bility (3) that scales as rameter¢ increases sharply, and the system loses its critical

properties.
x~1le. (8) Our previous studies of the modgl3] suggest that the

point of the transition between the regions A and B corre-
This formula recovers the result obtained by Vespignani an@gponds to the disappearance of the global loading-unloading
Zapperi[8] for the zero-field susceptibility in sandpile cellu- cycle. At this point, the loading periods become so short that
lar automata in the limih—0, e —0 [8]. We have found that the systemwide discharge events start merging. This obser-
in the current sheet model, the region in the control paramvation gives some hint about the origin of the robust critical
eter space over which the susceptibility exhibits power-landynamics in region A. As long as the loading-unloading
scaling is rather wide. Equatiof7) offers a natural way to cycle exists, the model can adjust to changes in the control
observe this effect by looking at the paramegee have parameters by varying the loading interval. This mechanism
numerically studied the dependenceébn the control pa- allows the system to maintain a stationary state without
rameters choosing different values & and k so that the changing the scaling features of the turbulent unloading dy-
driving and the dissipation rates varied in the ranges Zhamics associated with the SOC avalanches. This is in con-
x10°%...2x10 tand 2<10°4...2x 10 !, respectively. trast to other avalanche models, which normally miss the
The preliminary analysis has shown that it is foand ¢ global loading-unloading cycle and can only adjust to
taken separately but the reduced variable that actually changes irh or & by reorganizing the avalanche dynamics.
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1 tions, its dynamics is affected by a nonlinear deterministic
0.9 chaos that is the source of randomness in the model. The
0.8 1 local chaos appears to be in an interesting symbiosis with the

x 07 scale-free avalanche dynamics that transmits the dynamical

N uncertainty over a wide range of scales making the behavior

§ 061 of the whole system practically unpredictable.

T 05 On the global scale, the continuum current sheet model
0.4 exhibits structurally stable critical scaling consistent with a
0.3 finite range of the reduced control paramétés and at non-
024 . zero values of the driving rate. In this state, the system shows

20 0 20 a power-law divergence of the integrated response function

4 over a broad range of the dissipation rate. The robust features
FIG. 5. Three examples of spatial profiles of the normalizedOf the model d_ynam'cs are closely connected to the global
magnetic field gradientdB, /dz)/k: (&) h=10"3, =102, h/e  loading-unloading cycle that allows a long-term steady state
=10% (b)) h=108 £=5x104 h/le=2x10"% (¢ h=2  Without affecting the intrinsic avalanche dynamics. We have
X 1075, =102, h/e=2x10"3. Each profile was averaged over also found that the observed critical behavior involves a re-
several global unloading events involving 5000 to 10 000 individualmarkably stable time-averaged spatial distribution of the
avalanches. The dotted horizontal line correspondsiBg/dz magnetic field, which tends to self-organize into a unique
= pk. stationary configuration.
These findings lead us to a more general picture for the
To better understand the nature of the observed robust Crit'g'[ructure of the attracting critical state. We suggest that an
cal scaling, it is instructive to return to the definition &f  opservation of scaling effects associated with SOC does not
According to Eq.(5), the absence of the dependenc&ain  pecessarily require fine-tuning these parameters to zero. In
t_he co_ntrol parameters [mplles a gl_oba_lly stal_ale spatial congontinuum  avalanche systems with a global loading-
figuration of the magnetic field making it possible t0 express,ninading cycle, a rather rough tuning might be sufficient to
the quantity(Q(z=0)); as a constant fraction of the spa- hain near-critical behavior displaying characteristic fea-
tiotemporal averag¢Q), .. The numerical investigation of tures of SOC state. Such tuning conditions may be met in a

field profiles averaged over several global unloading event : . )
has confirmed this effedFig. 5. It has been found that the (Fi:?ne Zzgifey;r:yc;ﬁf: s;ysstfrlr?ss i\;]vcl:tlrl:;;(éended degrees of free

shape of the field gradient looks almost identical for quite
differenth ande values, providedh/e belongs to the region
Ain Fig. 3, and changes dramatically la& goes outside the
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